Set up SedonaContext
Tip
We provide many ready-to-use example Python Jupyter notebooks. Please try them out: Wherobots examples.
SedonaSQL supports SQL/MM Part3 Spatial SQL Standard. It includes four kinds of SQL operators as follows. All these operators can be directly called through:
var myDataFrame = sedona.sql("YOUR_SQL")
myDataFrame.createOrReplaceTempView("spatialDf")
Dataset<Row> myDataFrame = sedona.sql("YOUR_SQL")
myDataFrame.createOrReplaceTempView("spatialDf")
myDataFrame = sedona.sql("YOUR_SQL")
myDataFrame.createOrReplaceTempView("spatialDf")
Alternatively, expr
and selectExpr
can be used:
myDataFrame.withColumn("geometry", expr("ST_*")).selectExpr("ST_*")
Detailed SedonaSQL APIs are available here: SedonaSQL API. You can find example county data (i.e., county_small.tsv
) in Sedona GitHub repo.
Pure SQL environment¶
You can directly Sedona in a SQL environment such as Databricks SQL notebooks.
Scala, Java, Python environment¶
If you use Sedona with Scala, Java, or Python, add the following line at the beginning of your code:
import org.apache.sedona.spark.SedonaContext
val sedona = SedonaContext.create(spark)
import org.apache.sedona.spark.SedonaContext;
SparkSession sedona = SedonaContext.create(spark)
from sedona.spark import *
sedona = SedonaContext.create(spark)
This function will create a SedonContext with necessary settings
Last update:
August 30, 2023 18:56:20